高感度質量イメージング装置(NanoSIMS 50L)を 用いた酸素析出物の評価

高感度質量イメージング装置(NanoSIMS 50L)は、SIMS(二次イオン質量分析)の中で最も空 間分解能が高く、同時に高感度、高質量分解能でのイメージング測定が可能である。今回は、 Siウェハ内の酸素析出物について評価した事例を紹介する。

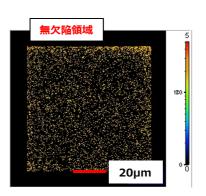

1. NanoSIMS 50Lの特徴

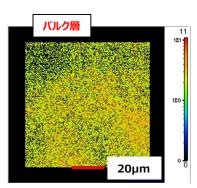
<主な装置スペック>

1次イオン種	Cs+, O-
最小ビーム径	O ⁻ : < 50 nm Cs ⁺ : < 50 nm
検出下限	ppb \sim ppm
質量分析計	二重収束型
同時測定イオン数	7
分析深さ	<数10 nm

2. 酸素析出物(BMD)とは

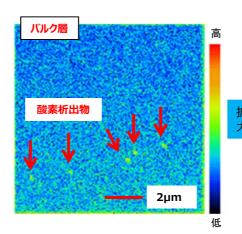
Si wafer

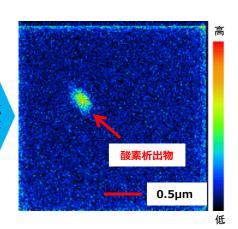



Siウェハをアニール処理することにより、「表層無欠陥、内部にはゲッタリング層」 という理想的なウェハ構造を有する。酸素析出物【BMD(bulk micro defects, oxygen precipitate) 】は、デバイス工程での金属汚染ゲッタリ ングサイトとして重要な役割を果たしている。

3. D-SIMS, NanoSIMSによる酸素の面内分布評価

D-SIMSによるOイメージ


無欠陥領域とバルク層では酸素濃度に違いが見ら れる。バルク層では面内で酸素に分布が認められる ものの、BMDの明瞭な分布は捉えられていない。 ただし、D-SIMSを用いた高感度条件で深さ方向 分析をすれば、NanoSIMSよりも低い酸素濃度 まで(1×10¹⁶ atoms/cm³台)検出できる。



NanoSIMSによるOイメージ

D-SIMSを用いたイメージング分析 では捉えることができなかったバルク 層におけるBMDの面内分布が、 NanoSIMSの高空間分解能測定 では明確に捉えられている。また、視 野内に複数のBMDの存在も確認で きる。NanoSIMSはD-SIMSに 比べて観察視野が小さくても、高感 度に不純物を検出できる。

微小領域におけるH, C, N, O等の軽元素の高感度イメージング分析には、 NanoSIMSが有効である。

P02206表面科学第1研究室20200910