in-situ SEM observation of all solid lithium battery

By SEM observation of all-solid-state battery while charge and discharge, it is possible to detect the morphological changes of constituent materials and the changes of element distribution. Here, we introduce the *in-situ* observation of all-solid-state battery using sulfide-based solid electrolyte.

in-situ SEM observation

- Available under (1) inert atmosphere, (2) pressure and/or restriction to sample, (3) Voltage application (4) sample heating
- Suitable for in-situ observation for all solid state batteries
- Information of morphological and composition changes (Li insertion / desorption, etc.) can be obtained
- Possible to evaluate the same sample by Raman and TOF-SIMS

Composition of all solid state battery

Cathode 70 µm : NCA / LGPS

SE layer 800 µm : Li₆PS₅Cl

Anode 100 µm : Graphite / Li₆PS₅Cl

Charge and discharge condition

- **0.1 C CC**
- **Voltage range**
 - 2.7 ~ 4.5 V

Sample was provided by Dr. Tabuchi, AIST, Japan

Visualization of gap and crack between active material and solid electrolyte during charge / discharge process