Measurement of Proton Conductivity of Electrolyte Membrane for Fuel Cell

The proton conductivity of the electrolyte membrane is an important physical property for the performance of the membrane. We can provide proton conductivity in a wide range of temperatures and humidity.

Characteristics required for electrolyte membranes
 Transfer of hydrogen ions (proton conduction)
 Gas (hydrogen and oxygen) isolation
 Insulation between anode and cathode (electron isolation)

measurement is effective

Direct evaluation by AC impedance

- Evaluation method related to proton conduction

 Proton conductivity
- Proton conductivity
 ⇒ AC impedance method
- Water cluster radius ⇒ DSC method
- Water diffusion coefficient
 ⇒ PFG-NMR method
- EW value ⇒ Ion exchange method, Solid-state NMR method
 ※EW (equivalent weight)

Outline of measurement method

Method: 4-terminal method Direction: Planar direction Frequency: 10 kHz

Constant temperature and humidity

95 100 80 Controllable range % 60 Controllable range 15 Temperature /°C 85

Can be measured under a wide range of temperature and humidity conditions!

Measurement results at various conditions

Proton conductivity increases as temperature and humidity increase.

- Protone conductivity $=\frac{1}{\Delta R \ (\Omega \cdot \text{cm}^{-1}) \times S \ (\text{cm}^2)}$ Proton transport resistance $R \ (\Omega \cdot \text{cm}^2)$ $=\frac{1}{\sigma \ (\text{S} \cdot \text{cm}^{-1}) \div t \ (\text{cm})}$
 - S: Cross-sectional area, t: Membrane thickness

- By acquiring accurate physical property values, it contributes to material selection and improvement of simulation accuracy.
- It is possible to obtain an index of performance deterioration by a fuel cell operation test.