Highly sensitive analysis of odorous component in gas

The online concentration system combined with GC can transfer odorous volatiles (number of C in Alkane > 2) desorbed from a sample into the GC column, and consequently can lower detection limit. The application to estimating odorous components desorbed from sulfuric compounds is presented.

Application

Sulfuric compounds

Retention time Fig. GC/MS-Total ion chromatogram

Online concentration-GC/MS analysis of gases desorbed from sulfuric compounds Condition of desorption • Heating temp. : R.T~200°C

Table Qualitative result of peak No.1~4

Pea No.	`l Components	Odors*
1	Sulfur Dioxide(SO ₂)	The irritating odor such as the egg which became addled.
2	Aldehyde	The irritating odor that was burnt and sweet-sour
3	Thiol	The skunk's intense acrid odor
4	Amine	The odor such as ammonia

*Reference: SDS, Handbook of Offensive Odor Control Law (in Japanese), etc.

Atmosphere : Air, N₂, etc.

SO₂, aldehyde, thiol, amine, etc. are estimated as the source of odors from Sample B.

Other applications

Fluoric compounds

Nitrile, aldehyde, etc. which contained fluorine are estimated as the source of odors from the sample

Plastic products

Unsaturated hydrocarbon (C5), aldehyde, thiazole, etc. are estimated as the source of odors from the sample

