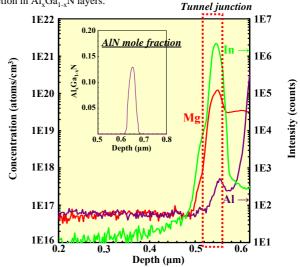

## SIMS Analysis of Dopants in GaN LED

A novel GaN-based LED was analyzed with dynamic SIMS equipped with two ion sources:  $Cs^+$  and  $O_2^+$ . The  $Cs^+$  primary ions can offer quantification of AlN mole fraction in  $Al_xGa_{1-x}N$  layers with high depth resolution, whereas the  $O_2^+$  ions provide high sensitivity for Mg with no mass interferences. In addition, the simultaneous detection of both Mg and Si was achieved with the use of  $O_2^+$  primary ions.



## Simultaneous Analysis of Mg and Si by O<sub>2</sub><sup>+</sup> ions


In general, depth profiling of Mg and Si is separately taken by detecting CsMg<sup>+</sup> and Si<sup>-</sup>, respectively. However, in order to evaluate the performance of the tunnel junction, it requires information about overlapping region of Mg and Si profiles. Here, we simultaneously took both Mg and Si profiles in the tunnel junctions with the use of  $O_2$ <sup>+</sup> primary beam by detecting Mg<sup>+</sup> and Si<sup>+</sup>.



Simultaneous detection of Mg and Si • High sensitivity for Mg

## Quantification of AIN mole fraction by Cs+ ions

The  $Cs^+$  primary ions can suppress a growth of surface roughness compared to the  $O_2^+$  ions, and thus provide better depth resolution. The  $Cs^+$  beam also enables us to detect molecular ions such as  $CsMg^+$ , which can reduce the change of ionization probability in matrix composition (matrix effect). In addition, the  $Cs^+$  ions can provide depth profiling of AlN and GaN mole fraction in  $Al_xGa_{1,x}N$  layers.



High depth resolution
Quantification of AlN mole fraction

## Comparison of detection limits between O2+ and Cs+

|                 | Detection limit (atoms/cm <sup>3</sup> ) |      |      |      |      | Donth regulation | Quantification of |
|-----------------|------------------------------------------|------|------|------|------|------------------|-------------------|
|                 | Mg                                       | Si   | Н    | C    | 0    | Depth resolution | AlN mole fraction |
| $O_2^+$         | 3E14                                     | 5E16 | -    | _    | ı    | Δ                | _                 |
| Cs <sup>+</sup> | 5E15                                     | 5E15 | 1E17 | 5E15 | 2E16 | 0                | 0                 |