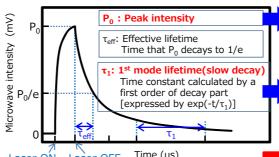

Analysis for lifetime of IGZO films by microwave photoconductivity decay (µ-PCD)

The carrier mobility and shift of threshold voltage are important parameters to control their electrical properties for TFT devices using oxide semiconductors, such as IGZO as channels, The results by microwave photoconductive decay (μ-PCD) are known to be related with those parameters. The μ-PCD is an effective method to evaluate process conditions and uniformity of TFT devices.

1. Microwave photoconductivity decay (μ-PCD)

Carriers in sample are excited by the irradiation of pulsed laser. After that the excited carriers return to the initial states due to the recombination. The μ -PCD method can observe the transient of excited carriers, monitoring the microwave reflectivity.

Schematic of μ-PCD



Spec of instruments wavelength of laser: 349 nm Mapping area: \sim 200 mm□

✓ Application to oxide semiconductor materials

- Non-contact and non destructive analysis.
- •Microwave intensity mapping (Evaluation of uniformity).
- •Relationship between the results and TFT characteristics.

√ Schematic of result and general evaluation contents

Time (us) Laser ON Laser OFF

Amorphous IGZO on Glass (50 mm□)

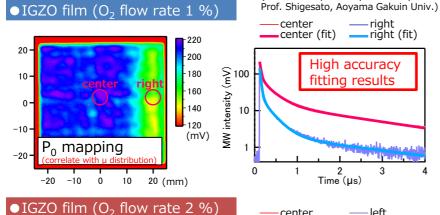
thickness: 1000 nm, In:Ga:Zn = 1:1:1

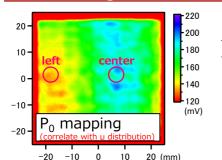
(*These samples are provided by

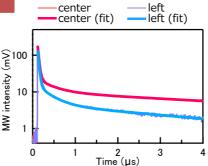
Samples

TFT Mobility, μ (cm²/Vs)

Mainly related with amount of defects in films.(tail states) The higher P₀ indicates the higher TFT


Shift of threshold voltage,


in films.(~0.2eV)


The higher τ_1 indicates the higher ΔV_{th} .

We analyze the decay curve in detail by multi components fitting model. \Rightarrow Extract τ_1 value more accurately.

2. Evaluation of IGZO films

✓ Results

Sample		P_0	τ_1
O ₂ rate	center	214 mW	2.5 μs
1 %	right	151 mW	3.0 µs
O ₂ rate	center	185 mW	6.8 µs
2 %	left	141 mW	4.3 µs

 P_0 : O_2 2% < O_2 1 % O₂ 1 % plausibly exhibits higher carrier mobility than O_2 2 %.

 $\tau_1 : O_2 \ 1\% < O_2 \ 2 \%$ O_2 1 % is expected to show lower ΔV_{th} than O_2 2 %.

The application of μ -PCD to IGZO films before the fabrications of TFT devices yields us important information about the characteristics of these devices.