Crystal phase analysis of HZO thin film using ACOM－TEM

$\mathrm{HZO}\left(\mathrm{Hf}_{0.5} \mathrm{Zr}_{0.5} \mathrm{O}_{2}\right)$ is receiving a lot of attention as memory applications because of its ferroelectricity even in the thin film．Only orthorhombic crystals show ferroelectricity，so it is important to understand which crystalline phases are contained in HZO to determine the dielectric properties．This paper introduces an example of using ACOM－TEM to evaluate the crystalline phase ratio and other properties of HZO thin films．
1．Cross－sectional analysis of HZO thin film $\begin{aligned} & \text { ACOM－TEM：Automated crystal orientation and phase mapping in TEM（product name ：ASTAR）} \\ & \text { Ferroelectric memory：FE－FET（Ferroelectric field effect transistor），etc．}\end{aligned}$

（a）Index map

（b）Phase map（HZO t $\square, \mathrm{o} \square, \mathrm{m} \square, \mathrm{TiN} \square, \mathrm{Si} \square$ ）

t（tetragonal），

AFE－like
$\underset{m \text {（monoclinic）}, \mathrm{PE}}{\text { a }}$
m（monoclinic），PE
Fig． 3 Crystal phases of HZO

Fig． 1 Cross－sectional BF－STEM image of the transistor Fig． 2 Maps obtained by cross－sectional ACOM－TEM analysis
Fig． 1 shows the cross section of a ferroelectric gate transistor．Fig．2（b）shows the results analyzed as mainly ferroelectric orthorhombic crystals． Fig． 3 shows the crystal phase types of HZO：tetragonal（ t ），orthorhombic (0) ，and monoclinic（ m ）．

Plan view analysis can provide more accurate results than cross－sectional analysis because more grains can be analyzed． The orthorhombic crystal ratio is 83% ，and the average grain size is 26 nm ． taken from multi－stack structure and plan－view ACOM－TEM analysis can be performed．
Our techniques can reveal the crystal phase ratios（tetragonal，orthorhombic，monoclinic）of HZO．

