Degradation analysis for polymer electrolyte membrane by H₂O₂ vapor exposure test To simulate the driving environment of polymer electrolyte fuel cells (PEFCs), accelerated degradation test system¹⁾ was composed. The degradation mechanism of perfluorosulfonated membrane was investigated by analyzing gases generated from the membrane exposed to $\rm H_2O_2$ vapor and structural analysis of degradated membrane. 1) Honmura, et al., Polymer Preprints, Japan vol.54, No.2 (2005) ## 1. Test method Figure 1. Scheme of the H_2O_2 vapor exposure test ## 2. Result of analysis (1) | | Exposure time (hr) | 48 | 96 | |----------------------|--------------------------------------|------|------| | Membrane | Weight reduction (%) | 0.8 | 2.8 | | | Ion exchange capacity (meq/g) | 0.94 | 0.94 | | Trapping
solution | F- (μg/g) | 3970 | 8690 | | | CF_3COO^- (µg/g) | 872 | 1870 | | | SO ₄ ²⁻ (μg/g) | 3 | 7 | | | TOC (µg/g) | 570 | 757 | | | H_2O_2 (mg/L) | 1.1 | | - ◆ Ion exchange capacity : - Rb replacement / atomic absorption spectrometry - Ions :Ion chromatography - ◆ TOC :Combustion oxidation / infrared absorption spectrometry ♦ H₂O₂: Absorption spectrometry With the degradation of membrane, F⁻ and CF₃COO⁻ were detected. ## 3. Result of analysis (2) Figure 2. Solid state ¹⁹F NMR spectrum of ionomer Figure 3. Side/main chain ratio Solid state 19 F NMR revealed molecular structure of polymer electrolyte membrane in before and after exposed to H_2O_2 . With increasing exposure time, side chain component decreased and degradation of membrane had seemed to make progress.